首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118123篇
  免费   6207篇
  国内免费   8775篇
  2023年   1398篇
  2022年   1521篇
  2021年   2769篇
  2020年   2852篇
  2019年   4509篇
  2018年   3288篇
  2017年   2538篇
  2016年   3014篇
  2015年   4381篇
  2014年   6192篇
  2013年   8312篇
  2012年   4959篇
  2011年   6773篇
  2010年   4979篇
  2009年   5266篇
  2008年   5495篇
  2007年   5850篇
  2006年   5308篇
  2005年   4749篇
  2004年   4077篇
  2003年   3559篇
  2002年   3242篇
  2001年   2650篇
  2000年   2286篇
  1999年   2281篇
  1998年   2078篇
  1997年   1821篇
  1996年   1573篇
  1995年   1882篇
  1994年   1756篇
  1993年   1611篇
  1992年   1639篇
  1991年   1418篇
  1990年   1225篇
  1989年   1180篇
  1988年   1136篇
  1987年   1069篇
  1986年   763篇
  1985年   1235篇
  1984年   1676篇
  1983年   1131篇
  1982年   1535篇
  1981年   1163篇
  1980年   1118篇
  1979年   1054篇
  1978年   644篇
  1977年   514篇
  1976年   445篇
  1975年   294篇
  1973年   308篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
41.
In order to evaluate the effectiveness and selectivity of various reagents in the solubilization of bacterial membranes, membranes of Micrococcus lysodeikticus were treated with detergents and chaotropic agents. The composition of the extracts so obtained was analyzed by rocket and two-dimensional immunoelectrophoretic techniques. Recovery of succinate-, malate-, and reduced nicotinamide adenine dinucleotide- (NADH) dehydrogenases, ATPase, succinylated lipomannan and cytochromes in the extracts was measured. Treatment with a variety of non-denaturing detergents produced extracts that were generally qualitatively uniform although quantitative differences were observed. The degree of extraction of various components was correlated with the hydrophile-lipophile balance. Several chaotropic agents were also evaluated as reagents for membrane solubilization. These agents were less effective in extraction of bulk protein, but produced extracts enriched in some membrane components.  相似文献   
42.
Ciliated tracheal epithelia cell cultures were investigated immunocytochemically with anti-tubulin and colloidal gold. When rabbit tracheal cultures were fixed in paraformaldehyde, treated with acetone, anti-tubulin and a second antibody coupled to FITC, fluorescence was associated with cytoskeletal and axonemal microtubules. Cilia covering the apical surface of the ciliated tracheal cells fluoresced very brightly thus facilitating identification of this cell type. Electron microscopy of tracheal cultures fixed as above, treated with Triton-X 100 and incubated in anti-tubulin and protein A coupled to colloidal gold resulted in the highly specific localization of tubulin in ciliary axonemes and basal bodies. Omission of primary or secondary antibody resulted in extremely low levels of fluorescence while no colloidal gold particles could be detected in cultures at the electron microscopy level when rabbit anti-tubulin was omitted.  相似文献   
43.
44.
Small conductance Ca2+-sensitive potassium (SK2) channels are voltage-independent, Ca2+-activated ion channels that conduct potassium cations and thereby modulate the intrinsic excitability and synaptic transmission of neurons and sensory hair cells. In the cochlea, SK2 channels are functionally coupled to the highly Ca2+ permeant α9/10-nicotinic acetylcholine receptors (nAChRs) at olivocochlear postsynaptic sites. SK2 activation leads to outer hair cell hyperpolarization and frequency-selective suppression of afferent sound transmission. These inhibitory responses are essential for normal regulation of sound sensitivity, frequency selectivity, and suppression of background noise. However, little is known about the molecular interactions of these key functional channels. Here we show that SK2 channels co-precipitate with α9/10-nAChRs and with the actin-binding protein α-actinin-1. SK2 alternative splicing, resulting in a 3 amino acid insertion in the intracellular 3′ terminus, modulates these interactions. Further, relative abundance of the SK2 splice variants changes during developmental stages of synapse maturation in both the avian cochlea and the mammalian forebrain. Using heterologous cell expression to separately study the 2 distinct isoforms, we show that the variants differ in protein interactions and surface expression levels, and that Ca2+ and Ca2+-bound calmodulin differentially regulate their protein interactions. Our findings suggest that the SK2 isoforms may be distinctly modulated by activity-induced Ca2+ influx. Alternative splicing of SK2 may serve as a novel mechanism to differentially regulate the maturation and function of olivocochlear and neuronal synapses.  相似文献   
45.
A new brain protein is described which forms an insoluble complex with tubulin, with concomitant stoichiometric hydrolysis of GTP. The complex contains a maximum of one tubulin-binding protein (MW 52,500) per two tubulin dimers. The tubulin-binding protein (TBP) does not compete with colchicine, but in the presence of microtubule-associated proteins tubulin appeared less accessible to it. Proteins such as TBP might sequester tubulin and thereby function either to inhibit indiscriminate polymerization, or to promote ordered nucleation by maintaining high local concentrations.  相似文献   
46.
The oxidized B chain of insulin was used as a simple model for further consideration of limited proteolysis with low substrate:enzyme ratios. With low B chain:trypsin ratios, the ordinarily slower cleavage rate of the -Lys29-Ala30 bond essentially equaled the cleavage saturation rate of the -Arg22-Gly23 bond. This led to the disappearance of octapeptide which ordinarily forms most rapidly. Heptapeptide and alanine, formed mainly by cleavage of the octapeptide, decreased somewhat at high enzyme relative levels. Trypsin added to B chain formed a single chromatographic peak.  相似文献   
47.
The mechanism of depletion of tricarboxylic acid cycle intermediates by isolated rat heart mitochondria was studied using hydroxymalonate (an inhibitor of malic enzymes) and mercaptopicolinate (an inhibitor of phosphoenolpyruvate carboxykinase) as tools. Hydroxymalonate inhibited the respiration rate of isolated mitochondria in state 3 by 40% when 2 mM malate was the only external substrate, but no inhibition was found with 2 mM malate plus 0.5 mM pyruvate as substrates. In the prescence od bicarbonate, arsenite and ATP, propionate was converted to pyruvate and malate at the rates of 14.0 ± 2.9 and 2.8 ± 1.8 nmol/mg protein in 5 min, respectively. Under these conditions, 0.1 mM mercaptopicolinate did not affect this conversion, but 2 mM hydroxymalonate inhibited pyruvate formation completely and resulted in an accumulation of malate up to 13.2 ± 2.9 nmol/mg protein. No accumulation of phosphoenolpyruvate was found under any condition tested. It is concluded that malic enzymes but not phosphoenolpyruvate carboxykinase, are involved in conversion of propionate to pyruvate in isolated rat heart mitochondria.  相似文献   
48.
Comment on: Rokavec M, et al. Mol Cell 2012; 45:777-89.  相似文献   
49.
The effect of cationic, anionic and nonionic detergents on the EPR spectrum of spin-labeled somatostatin has been studied. At detergent concentrations well above the critical micelle concentration, nonionic detergents do not alter the EPR spectrum. Sodium dodecyl sulfate markedly alters both the line height ratio and the hyperfine splitting constant, whilst dodecyltrimethylammonium bromide alters only slightly the hyperfine splitting constant and line height ratio. The somatostatin-sodium dodecyl sulfate complex appeared monodisperse by sedimentation equilibrium with about 17 g bound detergent per g peptide. Circular dichroic and difference spectra of the dodecyl sulfate-somatostatin complex show that the tryptophanyl residue is buried in a nonpolar environment and that the secondary and tertiary structure of the peptide is markedly altered. Sedimentation equilibrium studies suggest that two types of dodecyltrimethylammonium-somatostatin complex exist. One type resembles the dodecyl sulfate-peptide complex, whilst the other appears to include several peptide units with only about one gram bound detergent per gram peptide.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号